metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

A novel one-dimensional complex: *catena*-poly[[manganese(III)-di- μ -2-[(2-hydroxyethyl)iminomethyl]phenolato- $\kappa^2 O^1$, N: κO^2 ; κO^2 : $\kappa^2 O^1$] chloride]

Li-Fang Zhang,^a Zhong-Hai Ni,^b Zhi-Min Zong,^a* Xian-Yong Wei,^a* Chun-Hua Ge^b and Hui-Zhong Kou^b

^aSchool of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, Jiangsu, People's Republic of China, and ^bDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China Correspondence e-mail: kouhz@mail.tsinghua.edu.cn, wei_xy1@sina.com

Received 23 August 2005 Accepted 21 October 2005 Online 30 November 2005

In the title one-dimensional complex, {[$Mn^{III}(C_9H_{10}NO_2)_2$]-Cl}_n, the Schiff base ligand 2-[(2-hydroxyethyl)iminomethyl]phenolate (Hsae⁻) functions as both a bridging and a chelating ligand. The Mn^{III} ion is six-coordinated by two N and four O atoms from four different Hsae⁻ ligands, yielding a distorted MnO_4N_2 octahedral environment. Each [Mn^{III} -(Hsae)₂]⁺ cationic unit has the Mn atom on an inversion centre and each [$Mn^{III}(Hsae)_2$]⁺ cation lies about another inversion centre. The chain-like complex is further extended into a three-dimensional network structure through Cl···H— O hydrogen bonds and C—H··· π contacts involving the Hsae⁻ rings.

Comment

Recently, the Schiff base proligand 2-[(2-hydroxyethyl)iminomethyl]phenol (H₂sae) and its derivatives have been employed to assemble discrete alkoxo- or phenoxo-bridged complexes with interesting magnetic properties in the field of coordination chemistry (Oshio et al., 2000, 2003; Koizumi et al., 2003). After deprotonation, H₂sae yields the potentially tridentate Hsae⁻ or sae²⁻ ligands, which possess an ONO donor set and are able to bind in both bridging and chelating modes (Basler et al., 2003). In addition, the favorable flexibility of the $-N = CH_2 - CH_2 - OH$ or $[-N = CH_2 - CH_2 - O]^$ moiety and the rigidity of the benzene ring structure in Hsae⁻ or sae²⁻ ligands can lead to unexpected complexes with beautiful molecular structures and interesting properties (Koizumi et al., 2005). To date, more than 20 complexes involving Ni^{II}, Cu^{II}, Fe^{II}, Fe^{III}, Mn^{II} and Mn^{III} ions have been reported featuring Hsae⁻ or sae²⁻ ligands and their derivatives (Dey et al., 2002; Nihei et al., 2003; Oshio, Nihei, Yoshida et al., 2005; Boskovic et al., 2003, 2005). It is noteworthy that several of these complexes exhibit the behavior of singlemolecule magnets (SMMs) (Oshio *et al.*, 2004; Oshio, Nihei, Yoshida *et al.*, 2005; Oshio, Nihei, Koizumi *et al.*, 2005; Boskovic *et al.*, 2003). However, to the best of our knowledge, all such reported complexes are zero-dimensional, including mono- or binuclear complexes as well as polynuclear clusters. We report here the synthesis and crystal structure of a novel one-dimensional chain-like complex, $\{[Mn^{III}(Hsae)_2]Cl\}_n, (I),$ which represents a new topology containing the Hsae⁻ ligand.

The one-dimensional structure of (I) is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. The crystal structure consists of a one-dimensional cationic polymer, $[Mn^{III}(Hsae)_2]_n^{n+}$, and free Cl^- anions. Each [Mn^{III}(Hsae)₂]⁺ cationic unit is centrosymmetric. The Mn atom is six-coordinated symmetrically by two phenoxy O atoms and two N atoms from the two Hsae⁻ ligands, and two alkoxy O atoms from the two adjacent [Mn^{III}(Hsae)₂]⁺ units, yielding a distorted MnO₄N₂ octahedral surrounding. The Mn-O and Mn-N bond lengths are in accordance with the corresponding bonds in bi- or polynuclear complexes involving H₂sae or its derivatives (Table 2). In one Hsae⁻ ligand, the phenoxo O atom and the N atom coordinate to the same Mn atom, whereas the alkoxo O atom coordinates to the next adjacent Mn atom. Alternatively, the complex can be simply considered as doubly linked by two O-C-C=N bridging groups (Fig. 1), which makes the one-dimensional structure look like an infinite '8'-shaped chain. The '8'-shaped chains are linked by Cl⁻ ions through O2-H10...Cl1 hydrogen bonds to form a two-dimensional network structure (Fig. 2). The networks are then further connected by $C-H\cdots\pi$

Figure 1

A fragment of the one-dimensional structure of (I), showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms bonded to C atoms have been omitted. [Symmetry codes on Mn: (A) x, y - 1, z; (B) x, y + 1, z; on N and O: (A) -x, -y + 1, -z; (B) x, y - 1, z; (AB) -x, -y + 2, -z.]

The two-dimensional network of (I), formed by hydrogen-bond interactions (along the c axis). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.

contacts between the Hsae⁻ rings, with a shortest CH···C distance $[C3-H3\cdot\cdot\cdot C4(-x+\frac{1}{2}, y+\frac{1}{2}, -z+\frac{1}{2})$; Umezawa *et al.*, 1998] of 2.726 Å, to yield a three-dimensional non-covalent network structure.

Comparing with the reported alkoxo- or phenoxo-bridged polynuclear complexes containing the Hsae⁻ or sae²⁻ ligand, we found that the key factor favoring the formation of a onedimensional structure in the title complex, instead of a polynuclear structure, is that the phenoxo or alkoxo O atom does not act as a bridging atom, while the whole Hsae⁻ ligand functions as a bridging group. The synthesis of the title complex is similar to that of the tetranuclear [Mn₄(Hsae)₄Cl₄] complex (Boskovic *et al.*, 2003), except that a different solvent is used; this fact demonstrates that the molecular structures of complexes are strongly dependent on the solvent employed for the system.

Experimental

 $MnCl_2 \cdot 4H_2O$ (0.61 g, 3.09 mmol) was added to a solution of H_2 sae (0.51 g, 3.09 mmol) in EtOH (40 ml), and the resulting mixture was stirred overnight and filtered. The filtrate was evaporated to dryness and then dissolved in a mixture of MeOH and MeCN (volume ratio about 1:4). The resulting solution was evaporated at room temperature until dark-brown needles formed.

Crystal data

[Mn(CoHtoNO2)2]C]	$D = 1.547 \text{ Mg m}^{-3}$
$M_r = 418.76$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 2054
a = 18.202 (8) Å	reflections
b = 5.700 (2) Å	$\theta = 3.8-27.5^{\circ}$
c = 18.703(9) Å	$\mu = 0.91 \text{ mm}^{-1}$
$\beta = 112.091 (3)^{\circ}$	T = 123 (2) K
V = 1797.9 (13) Å ³	Needle, brown
Z = 4	$0.30 \times 0.10 \times 0.03 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID IP	2054 independent reflections 1571 reflections with $L > 2\sigma(L)$
Oscillation scans	$R_{\rm int} = 0.092$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -23 \rightarrow 23$
$T_{\min} = 0.802, \ T_{\max} = 0.928$	$k = -7 \rightarrow 6$
5807 measured reflections	$l = -19 \rightarrow 24$
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_0^2) + (0.0254P)^2]$
$vR(F^2) = 0.103$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.96	$(\Delta/\sigma)_{\rm max} < 0.001$
2054 reflections	$\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$
122 parameters	$\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1 Mn1-N1	1.8659 (17) 2.0232 (18)	Mn1-O2 ⁱ	2.2874 (15)
O1-Mn1-N1 $O1-Mn1-O2^{i}$	89.32 (7) 88.56 (7)	N1-Mn1-O2 ⁱ	87.29 (7)

Symmetry code: (i) x, y - 1, z.

Table 2

Comparative geometric parameters (Å) for complexes involving similar ligands.

Complex	Mn-O _{phenoxy}	$Mn - O_{alkoxy}$	Mn-N
$(I)^{a}$ $(II)^{b}$ $(III)^{c}$ $(IV)^{d}$ $(V)^{e}$	1.8659 (17) 1.856 (2)-1.866 (2) - 1.882 (4)-2.100 (4) 1.860 (5)	2.2874 (15) - 2.214 (2)-2.223 (3) -	2.0232 (18) 1.972(3)–1.994 (3) – 1.968 (2)–2.228 (4) 2.021 (7)

[†] Notes: (a) this work; (b) $Mn_4Cl_4L_4$ (H_2L is salicylidene-2-ethanolamine; Boskovic et al., 2003); (c) $Mn_2^{II}(H_2L)_2Cl_2$ [H_3L is N-(2-hydroxy-5-nitrobenzyl)minodiethanol; Koizumi et al., 2004]; (d) [$Mn_4^{II}Mn_2^{III}(sae)_6(CH_3OH)_2Cl_2]$ ·2CH₃OH (H₂sae is 2-salicylideneaminoethanol; Hoshino et al., 2003); (e) $Mn_2^{III}Ni_2^{II}Cl_2(salpa)_2$ [salpa is N-(2-hydroxybenzyl)-3-amino-1-propanol; Oshio, Nihei, Koizumi et al., 2005].

The coordinates of the H atoms of the alkoxo group were found from difference Fourier maps and normalized to give an O–H distance of 0.85 Å. H atoms bound to C atoms were also visible in difference maps, and were positioned using the HFIX command in *SHELXL97* (Sheldrick, 1997) and refined as riding atoms (C–H = 0.97 or 0.93 Å).

Data collection: *CrystalStructure* (Rigaku/MSC, 2004); cell refinement: *CrystalStructure*; data reduction: *CrystalStructure*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1998); software used to prepare material for publication: *XP*.

This work was supported by the Natural Science Foundation of China (grant Nos. 20201008 and 50272034).

References

Basler, R., Boskovic, C., Chaboussant, G., Gudel, H. U., Murrie, M., Ochsenbein, S. T. & Sieber, A. (2003). *Chemphyschem*, **4**, 910–926.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1257). Services for accessing these data are described at the back of the journal.

- Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046–14058.
- Boskovic, C., Gudel, H. U., Labat, G., Neels, A., Wernsdorfer, W., Moubaraki, B. & Murray, K. S. (2005). *Inorg. Chem.* 44, 3181–3189.
- Dey, M., Rao, C. P., Saarenketo, P. K. & Rissanen, K. (2002). Inorg. Chem. Commun. 5, 924–928.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hoshino, N., Ito, T., Nihei, M. & Oshio, H. (2003). Inorg. Chem. Commun. 6, 377–380.
- Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). *Inorg. Chem.* 44, 1208– 1210.
- Koizumi, S., Nihei, M. & Oshio, H. (2003). Chem. Lett. 32, 812-813.
- Koizumi, S., Nihei, M. & Oshio, H. (2004). Chem. Lett. 33, 896-897.
- Nihei, M., Hoshino, N., Ito, T. & Oshio, H. (2003). Polyhedron, 22, 2359-2362.
- Oshio, H., Hoshino, N. & Ito, T. (2000). J. Am. Chem. Soc. 122, 12602-12603.

- Oshio, H., Hoshino, N., Ito, T. & Nakano, M. (2004). J. Am. Chem. Soc. 126, 8805–8812.
- Oshio, H., Hoshino, N., Ito, T., Nakano, M., Renz, F. & Gutlich, P. (2003). Angew. Chem. Int. Ed. 42, 223–225.
- Oshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568–4569.
- Oshio, H., Nihei, M., Yoshida, A., Nojiri, H., Nakano, M., Yamaguchi, A., Karaki, Y. & Ishimoto, H. (2005). *Chem. Eur. J.* **11**, 843–848.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1998). XP. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. & Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1207–1213.