Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

A novel one-dimensional complex: catena-poly[[manganese(III)-di- μ -2-[(2-hydroxyethyl)iminomethyl]-phenolato- $\left.\kappa^{2} O^{1}, N: \kappa O^{2} ; \kappa O^{2}: \kappa^{2} O^{1}\right]$ chloride]

Li-Fang Zhang, ${ }^{\text {a }}$ Zhong-Hai Ni, ${ }^{\text {b }}$ Zhi-Min Zong, ${ }^{\text {a* }}$ Xian-Yong Wei, ${ }^{\text {a }}{ }^{*}$ Chun-Hua Ge ${ }^{\text {b }}$ and Hui-Zhong Kou ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, Jiangsu, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China Correspondence e-mail: kouhz@mail.tsinghua.edu.cn, wei_xy1@sina.com

Received 23 August 2005
Accepted 21 October 2005
Online 30 November 2005
In the title one-dimensional complex, $\left\{\left[\mathrm{Mn}^{\mathrm{III}}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2}\right)_{2}\right]\right.$ $\mathrm{Cl}\}_{n}$, the Schiff base ligand 2-[(2-hydroxyethyl)iminomethyl]phenolate (Hsae^{-}) functions as both a bridging and a chelating ligand. The $\mathrm{Mn}^{\mathrm{III}}$ ion is six-coordinated by two N and four O atoms from four different Hsae^{-}ligands, yielding a distorted $\mathrm{MnO}_{4} \mathrm{~N}_{2}$ octahedral environment. Each [$\mathrm{Mn}^{\mathrm{III}}$ $\left.(\mathrm{Hsae})_{2}\right]^{+}$cationic unit has the Mn atom on an inversion centre and each $\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{Hsae})_{2}\right]^{+}$cation lies about another inversion centre. The chain-like complex is further extended into a three-dimensional network structure through $\mathrm{Cl} \cdots \mathrm{H}-$ O hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts involving the Hsae^{-}rings.

Comment

Recently, the Schiff base proligand 2-[(2-hydroxyethyl)iminomethyl]phenol $\left(\mathrm{H}_{2} \mathrm{sae}\right)$ and its derivatives have been employed to assemble discrete alkoxo- or phenoxo-bridged complexes with interesting magnetic properties in the field of coordination chemistry (Oshio et al., 2000, 2003; Koizumi et al., 2003). After deprotonation, H_{2} sae yields the potentially tridentate Hsae^{-}or sae ${ }^{2-}$ ligands, which possess an ONO donor set and are able to bind in both bridging and chelating modes (Basler et al., 2003). In addition, the favorable flexibility of the $-\mathrm{N}=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$ or $\left[-\mathrm{N}=\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}\right]^{-}$ moiety and the rigidity of the benzene ring structure in Hsae^{-} or sae ${ }^{2-}$ ligands can lead to unexpected complexes with beautiful molecular structures and interesting properties (Koizumi et al., 2005). To date, more than 20 complexes involving $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{II}}, \mathrm{Fe}^{\mathrm{III}}, \mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\text {III }}$ ions have been reported featuring Hsae^{-}or sae ${ }^{2-}$ ligands and their derivatives (Dey et al., 2002; Nihei et al., 2003; Oshio, Nihei, Yoshida et al., 2005; Boskovic et al., 2003, 2005). It is noteworthy that
several of these complexes exhibit the behavior of singlemolecule magnets (SMMs) (Oshio et al., 2004; Oshio, Nihei, Yoshida et al., 2005; Oshio, Nihei, Koizumi et al., 2005; Boskovic et al., 2003). However, to the best of our knowledge, all such reported complexes are zero-dimensional, including mono- or binuclear complexes as well as polynuclear clusters. We report here the synthesis and crystal structure of a novel one-dimensional chain-like complex, $\left\{\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{Hsae})_{2}\right] \mathrm{Cl}\right\}_{n}$, (I), which represents a new topology containing the Hsae^{-}ligand.

(I)

The one-dimensional structure of (I) is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1. The crystal structure consists of a one-dimensional cationic polymer, $\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{Hsae})_{2}\right]_{n}^{n+}$, and free Cl^{-}anions. Each $\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{Hsae})_{2}\right]^{+}$cationic unit is centrosymmetric. The Mn atom is six-coordinated symmetrically by two phenoxy O atoms and two N atoms from the two Hsae^{-}ligands, and two alkoxy O atoms from the two adjacent $\left[\mathrm{Mn}^{\mathrm{III}}(\mathrm{Hsae})_{2}\right]^{+}$units, yielding a distorted $\mathrm{MnO}_{4} \mathrm{~N}_{2}$ octahedral surrounding. The $\mathrm{Mn}-\mathrm{O}$ and $\mathrm{Mn}-\mathrm{N}$ bond lengths are in accordance with the corresponding bonds in bi- or polynuclear complexes involving H_{2} sae or its derivatives (Table 2). In one Hsae^{-}ligand, the phenoxo O atom and the N atom coordinate to the same Mn atom, whereas the alkoxo O atom coordinates to the next adjacent Mn atom. Alternatively, the complex can be simply considered as doubly linked by two $\mathrm{O}-\mathrm{C}-\mathrm{C}=\mathrm{N}$ bridging groups (Fig. 1), which makes the one-dimensional structure look like an infinite ' 8 '-shaped chain. The ' 8 '-shaped chains are linked by Cl^{-}ions through $\mathrm{O} 2-\mathrm{H} 10 \cdots \mathrm{Cl} 1$ hydrogen bonds to form a two-dimensional network structure (Fig. 2). The networks are then further connected by $\mathrm{C}-\mathrm{H} \cdots \pi$

Figure 1
A fragment of the one-dimensional structure of (I), showing the atomlabeling scheme. Displacement ellipsoids are drawn at the 30\% probability level. H atoms bonded to C atoms have been omitted. [Symmetry codes on Mn: (A) $x, y-1, z ;(B) x, y+1, z ;$ on N and $\mathrm{O}:(A)$ $-x,-y+1,-z ;(B) x, y-1, z ;(A B)-x,-y+2,-z$.]

Figure 2
The two-dimensional network of (I), formed by hydrogen-bond interactions (along the c axis). Hydrogen bonds are shown as dashed lines and H atoms have been omitted for clarity.
contacts between the Hsae^{-}rings, with a shortest $\mathrm{CH} \cdots \mathrm{C}$ distance $\left[\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{C} 4\left(-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}\right)\right.$; Umezawa et al., 1998] of $2.726 \AA$, to yield a three-dimensional non-covalent network structure.

Comparing with the reported alkoxo- or phenoxo-bridged polynuclear complexes containing the Hsae^{-}or sae ${ }^{2-}$ ligand, we found that the key factor favoring the formation of a onedimensional structure in the title complex, instead of a polynuclear structure, is that the phenoxo or alkoxo O atom does not act as a bridging atom, while the whole Hsae^{-}ligand functions as a bridging group. The synthesis of the title complex is similar to that of the tetranuclear $\left[\mathrm{Mn}_{4}(\mathrm{Hsae})_{4} \mathrm{Cl}_{4}\right]$ complex (Boskovic et al., 2003), except that a different solvent is used; this fact demonstrates that the molecular structures of complexes are strongly dependent on the solvent employed for the system.

Experimental

$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.61 \mathrm{~g}, 3.09 \mathrm{mmol})$ was added to a solution of $\mathrm{H}_{2} \mathrm{sae}$ $(0.51 \mathrm{~g}, 3.09 \mathrm{mmol})$ in $\mathrm{EtOH}(40 \mathrm{ml})$, and the resulting mixture was stirred overnight and filtered. The filtrate was evaporated to dryness and then dissolved in a mixture of MeOH and MeCN (volume ratio about 1:4). The resulting solution was evaporated at room temperature until dark-brown needles formed.

Crystal data

```
[Mn((C)}\mp@subsup{\textrm{H}}{10}{}\mp@subsup{\textrm{NO}}{2}{}\mp@subsup{)}{2}{}]\textrm{Cl
M
Monoclinic, C2/c
a=18.202 (8) \AA
b=5.700(2) \AA
c=18.703(9) \AA
\beta=112.091(3)\circ
V=1797.9(13) \AA ^
Z=4
D}=1.547\mp@subsup{\textrm{Mg m}}{}{-3
Mo K\alpha radiation
Cell parameters from 2054
    reflections
0=3.8-27.5
\mu=0.91 mm
T=123(2) K
Needle, brown
0.30\times0.10 }\times0.03\textrm{mm
```


Data collection

Rigaku R-AXIS RAPID IP diffractometer
Oscillation scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.802, T_{\text {max }}=0.928$
6807 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.103$
$S=0.96$
2054 reflections
122 parameters

2054 independent reflections
1571 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-23 \rightarrow 23$
$k=-7 \rightarrow 6$
$l=-19 \rightarrow 24$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0254 P)^{2}\right]$
where $P \stackrel{\mathrm{o}}{=}\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \AA^{\circ}$).

$\mathrm{Mn} 1-\mathrm{O} 1$	$1.8659(17)$	$\mathrm{Mn} 1-\mathrm{O}^{\mathrm{i}}$	$2.2874(15)$
$\mathrm{Mn} 1-\mathrm{N} 1$	$2.0232(18)$		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1$	$89.32(7)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.29(7)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{i}}$	$88.56(7)$		
Symmetry code: (i)	$x, y-1, z$		

Symmetry code: (i) $x, y-1, z$.
Table 2
Comparative geometric parameters (\AA) for complexes involving similar ligands.

Complex	$\mathrm{Mn}-\mathrm{O}_{\text {phenoxy }}$	$\mathrm{Mn}-\mathrm{O}_{\text {alkoxy }}$	Mn - N
(I) ${ }^{a}$	1.8659 (17)	2.2874 (15)	2.0232 (18)
(II) ${ }^{\text {b }}$	1.856 (2)-1.866 (2)	-	1.972(3)-1.994 (3)
(III) ${ }^{c}$	-	2.214 (2)-2.223 (3)	-
(IV) ${ }^{\text {d }}$	1.882 (4)-2.100 (4)	-	1.968 (2)-2.228 (4)
$(\mathrm{V})^{e}$	1.860 (5)	-	2.021 (7)

\dagger Notes: (a) this work; (b) $\mathrm{Mn}_{4} \mathrm{Cl}_{4} L_{4}$ ($\mathrm{H}_{2} L$ is salicylidene-2-ethanolamine; Boskovic et al., 2003); (c) $\mathrm{Mn}_{2}^{\mathrm{II}}\left(\mathrm{H}_{2} L\right)_{2} \mathrm{Cl}_{2}$ [$\mathrm{H}_{3} L$ is N-(2-hydroxy-5-nitrobenzyl)iminodiethanol; Koizumi et al., 2004]; (d) $\left[\mathrm{Mn}_{4}^{\mathrm{II}} \mathrm{Mn}_{2}^{\mathrm{III}}(\mathrm{sae})_{6}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{H}_{2}\right.$ sae is 2-salicylideneaminoethanol; Hoshino et al., 2003); (e) $\mathrm{Mn}_{2}^{\mathrm{II}} \mathrm{Ni}_{2}^{\mathrm{II}} \mathrm{Cl}_{2}$ (salpa) ${ }_{2}$ [salpa is N -(2-hydroxybenzyl)-3-amino-1-propanol; Oshio, Nihei, Koizumi et al., 2005].

The coordinates of the H atoms of the alkoxo group were found from difference Fourier maps and normalized to give an $\mathrm{O}-\mathrm{H}$ distance of $0.85 \AA . \mathrm{H}$ atoms bound to C atoms were also visible in difference maps, and were positioned using the HFIX command in SHELXL97 (Sheldrick, 1997) and refined as riding atoms $(\mathrm{C}-\mathrm{H}=$ 0.97 or $0.93 \AA$).

Data collection: CrystalStructure (Rigaku/MSC, 2004); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ (Sheldrick, 1998); software used to prepare material for publication: $X P$.

This work was supported by the Natural Science Foundation of China (grant Nos. 20201008 and 50272034).

[^0]
References

Basler, R., Boskovic, C., Chaboussant, G., Gudel, H. U., Murrie, M., Ochsenbein, S. T. \& Sieber, A. (2003). Chemphyschem, 4, 910-926.

metal-organic compounds

Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. \& Stoeckli-Evans, H. (2003). J. Am. Chem. Soc. 125, 14046-14058.

Boskovic, C., Gudel, H. U., Labat, G., Neels, A., Wernsdorfer, W., Moubaraki, B. \& Murray, K. S. (2005). Inorg. Chem. 44, 3181-3189.

Dey, M., Rao, C. P., Saarenketo, P. K. \& Rissanen, K. (2002). Inorg. Chem. Commun. 5, 924-928.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hoshino, N., Ito, T., Nihei, M. \& Oshio, H. (2003). Inorg. Chem. Commun. 6, 377-380.
Koizumi, S., Nihei, M., Nakano, M. \& Oshio, H. (2005). Inorg. Chem. 44, 12081210.

Koizumi, S., Nihei, M. \& Oshio, H. (2003). Chem. Lett. 32, 812-813.
Koizumi, S., Nihei, M. \& Oshio, H. (2004). Chem. Lett. 33, 896-897.
Nihei, M., Hoshino, N., Ito, T. \& Oshio, H. (2003). Polyhedron, 22, 2359-2362.
Oshio, H., Hoshino, N. \& Ito, T. (2000). J. Am. Chem. Soc. 122, 12602-12603.

Oshio, H., Hoshino, N., Ito, T. \& Nakano, M. (2004). J. Am. Chem. Soc. 126, 8805-8812.
Oshio, H., Hoshino, N., Ito, T., Nakano, M., Renz, F. \& Gutlich, P. (2003). Angew. Chem. Int. Ed. 42, 223-225.
Oshio, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. \& Akatsu, M. (2005). J. Am. Chem. Soc. 127, 4568-4569.

Oshio, H., Nihei, M., Yoshida, A., Nojiri, H., Nakano, M., Yamaguchi, A., Karaki, Y. \& Ishimoto, H. (2005). Chem. Eur. J. 11, 843-848.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). XP. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Umezawa, Y., Tsuboyama, S., Honda, K., Uzawa, J. \& Nishio, M. (1998). Bull. Chem. Soc. Jpn, 71, 1207-1213.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1257). Services for accessing these data are described at the back of the journal.

